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I.  INTRODUCTION 

The study of ignition is of fundamental interest to all research 
concerned with initiation of the heat releasing pathways of energetic 
materials.  For the Army, there is obviously great interest in assuring that 
weapons performance will not suffer by problems, such as delayed ignition 
Proper ignition is particularly difficult for the newly developed low 
vulnerability propellants (LOVA's), as well as for new charge designs in which 
the projectile intrudes sufficiently into the propellant bed so that the 
available length for the primer tube is shortened.  Many of these ignition 
problems can be approached and solved empirically by systematic alterations 
and subsequent testing of the particular charge design, but there still exists 
a great need to understand the fundamental aspects of the ignition process 
itself in which chemistry plays an important role.  In fact, even though the 
general area of ignition has been under study for a very long time, the 
details of the chemistry involved are generally unknown, except for some of 
the simplest gas phase reactive mixtures. 

There has been much phenomenological work done on electric spark ignition 
of gaseous mixtures.1  in these studies, a closed bomb was utilized where 
different gaseous mixtures were introduced at different pressures and ignited 
by an electric spark generated between two electrodes whose distance from each 
other could be varied.  In this manner, a family of curves were produced in 
which the minimum ignition energy was plotted against the percent fuel at 
different total pressures.  As alternative ignition sources, lasers have 
certain unique characteristics.  They can be propagated long distances, even 
to remote and inhospitable areas, potentially without much loss of available 
energy.  This energy can be imparted on a very short time scale, i.e., in the 
10 nsec regime for the ArF, KrF, and Nd:YAG lasers used here, as opposed to 
the microsecond regime for spark ignition.  In fact, lasers have been studied 
or quite some time for their potential as ignition sources for premixed 
ses  »■»»'♦ as well as for propellant ignition.5 

fo 
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B. Lewis and G. Von Elbe, "Combustion, Flames and Explosions of Gases," 
Academic Press,  New York, p. 390, 1951. 
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One of the major difficulties that was found in laser ignition was that 
the process was generally quite uncontrollable since it involved gas 
breakdown, i.e., the production of a laser-produced spark, which was usually 
accompanied by a substantial blast wave.  This blast wave was typically 
intense enough to cause transition into detonation for detonable gas mixtures 
at less than one atmosphere pressure"1 »J or to cause extinction of a 
atmospheric pressure flame already stabilized on a laboratory burner. 

Another characteristic unique to lasers operating in the ultraviolet, is 
that if their wavelength is short enough, then they can be used to induce 
photochemistry.  Thus, instead of just heating the sample and causing thermal 
chemistry to occur at the associated temperature or causing a relatively 
uncontrolled laser-produced spark, the energy is now used to break 
photocheraically accessible bonds and to create specific intermediate species 
with a given energy distribution which depends on the photophysical details of 
the process.  The possibility, therefore, exists that laser energy can be 
coupled very efficiently and in a controlled manner into desired photochemical 
channels. 

The utility of photochemical ignition was recognized some years ago where 
initially the work involved flash photolysis,  a xenon arc lamp and later an 
exciraer laser operating on the F2 (157 nm) and ArF (193 nm) lines.   In this 
latter experiment, Ho/Oo and iWair mixtures were irradiated and the results 
were analyzed on the basis of a single-photon photolysis model where 0 atom 
laser production from On was the initial step, followed by subsequent 
secondary reactions leading to full combustion.  More recently, a substantial 
effort to understand the chemical details of ignition has been undertaken in 
which a flashlamp single-photon photolysis ignition source is being used in 
conjunction with a molecular beam mass spectrometer sampling apparatus. 

Very recent flame studies, where short wavelength lasers were utilized 
for the detection of flame atoms, particularly 0 and H, have demonstrated 
that multiphoton photolysis of fuel and oxidizer molecules can occur at room 
temperature, as well as in a combustion environment, depending on the presence 
of appropriate photochemical precursors as well as sufficient laser pulse 

6R.G.W. Norrish, "The Study of Combustion by Photochemical Methods," Tenth 
Symposium (International) on Combustion, The Combustion Institute, p. 1, 
1965. 

A.E. Cerkanowicz and J.G. Stevens, "Case Studies of the Simulation of Novel 
Combustion Techniques," Proceedings of 1979 Summer Computer Simulation 
Conference, p. 170, July 1979. 
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M. Lavid and J.G. Stevens, "Photochemical Ignition of Premixed 
Hydrogen/Oxidizer Mixtures with Excimer Lasers," Technical Meeting of Eastern 
Section/The Combustion Institute, Providence, RI, 1983. 

R. Peterson, D. Lucas, F.C. Hurlbut, and A.K. Oppenheira, "Molecular Beam 
Overrun in Sampling Transient Combustion Processes," J. Phys. Chem., Vol. 88, 
pp. 4746-4749, 1984. 



energy.1^11  A subsequent study has probed some of the details of the 
multiphoton photochemical interaction between the ArF (193 nra) laser and a 
number of simple hydrocarbons. - All of this recent work from our laboratory 
has provided us with the impetus and some element of insight into the subject 
area covered in this report, i.e., multiphoton-induced photochemical 
ignition.  For this report, five different gas mixtures were ignited by three 
different lasers focused over a slot burner.  Two different initiation 
mechanisms must be invoked to explain our results.  The first is attributed to 
multiphoton photochemistry at 193 nm and 248 nm and the second to the onset of 
gas breakdown at 532 nm resulting in a laser-produced spark. 

II.  EXPERIMENTAL 

The experimental apparatus is quite simple and is illustrated in Figure 
1.  The ArF (193 nm) and KrF (248 nm) lasers result from mixing appropriate 
gas mixtures in a commercial excimer laser, a Lumonics Model 861M.  Typically, 
laser energies up to 12 mj/pulse (ArF) and 35 mj/pulse (KrF) are employed at a 
pulse rate of 10 pps.  The rectangular laser beams are masked down to a 
smaller beam profile whose dimension is ~2.2 x 1.5 cm and are subsequently 
focused by a nominally 100 mm focal length lens to a point approximately 3 mm 
above the slot of a slot burner whose orifice dimensions are 0.5 mm x 60 mm. 
The second harmonic beam of a Quanta-Ray NdrYAG laser (532 nm) is similarly 
focused as that of the excimer lasers and its pulse energy varied by changing 
the lamp energy output of the oscillator.  The pulse energy for the excimer 
lasers is varied by introducing different partially transmitting filters 
(Acton Research) into the beam path. 

The gases are taken from standard grade cylinders without further 
purification.  The oxidizer and fuel gases are passed through Matheson #602 
Rotameters, with a maximum flow rate ~10  scc/min.  Typically, the oxidizer 
flow was fixed, while the fuel flows were varied.  The laser energies were 
measured by volume absorbing calorimeters (Scientech), which also acted as 
beam stops (see Figure 1). 

It was observed that neither of the two excimer laser beams could cause 
air breakdown, i.e., a laser-produced spark, to occur up to their maximum 
output energies.  This is probably due to the fact that the highly divergent 
beams would not yield a sufficiently tight focus and thus the power density at 
the focal point was not high enough.  The 532 nm beam, however, caused air 
breakdown to occur at about the 10 mj/pulse level. 

10A.W. Miziolek and M.A. DeWilde, "Multiphoton Photochemical and Collisional 
Effects During Oxygen-Atom Flame Detection," Optics Letters, Vol. 9, p. 390, 
1984. 

^A.W. Miziolek and M.A. DeWilde, "Photochemical and Collisional Aspects of 
Laser Diagnostics of Combustion," Army Science Conference, West Point, 1984. 

1 ? -A.W. Miziolek, R.C. Sausa, and A.J. Alfano, "Efficient Detection of Carbon 
Atoms Produced by Argon Fluoride Laser Irradiation of Simple Hydrocarbons," 
ARBRL-TR-in preparation. 
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Figure 1.  Experimental Schematic 

The operational criterion for ignition was the appearance of a flame on 
the burner within the first three laser shots (this corresponded to 
approximately the time it took to open and close the laser trigger switch). 
It was found, for example, that a gas mixture just at the threshold of 
ignition might ignite after a number of laser shots.  This, however, was not 
surprising since typically the pulse-to-pulse laser amplitude stability 
is ~ ± 10%. 

All of the laser energies were measured before flowing the premixed gases 
through the burner and thus any problems in energy measurements due to 
absorption and/or scatter of laser radiation by the premixed gases were 
avoided.  It was found that, for the excimer laser ignition case, most of the 
available laser energy was transmitted with relatively little (25% or less) 
being absorbed or scattered both below the ignition energy threshold and once 
ignition occurred. For the Nd:YAG second harmonic (532 nm) case, however, once 
the gas breakdown threshold was exceeded, then most of the laser energy 
appeared to be absorbed and/or scattered. 
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III.  RESULTS AND DISCUSSION 

The dependence of minimum ignition energy on percent fuel for ClWair is 
given in Figure 2.  For this particular gas mixture, neither the ArF nor KrF 
exclraer laser could initiate Ignition up to their maximum output energies. 
The Nd:YAG laser did, however. Ignite the mixture and, for comparison, a 
similar plot for the spark ignition case in the closed bomb is included.1  The 
graph for C^/N^O is given in Figure 3.  In this case, the ArF laser was found 
to ignite the mixture very efficiently, whereas the KrF laser had no effect. 
An explanation for this behavior might include the possibility that the ArF 
laser couples photochemically well with the ^0 molecule, whereas, the KrF 
does not.  Previous experiments have shown that multiphoton-lnduced 
photochemistry of ^0 occurs at 225.6 nm in which 0 atoms are produced.10'11 

The graph for CgHg/air is given in Figure 4.  Here the ArF laser was 
found to ignite the mixture, but the KrF laser did not.  The fact that the ArF 
laser was able to ignite the C3H8/air mixture appears to be consistent with 
our observations that the ArF laser is photochemically more active with CoHo 
than with CH^.12 This assumes, however, that the observed low pressure 
behavior extrapolates to atmospheric pressure.  For 03113/^0 mixtures, the 
data is given in Figure 5.  In this case, all three lasers were found to 
Ignite the gases, but with quite different efficiencies.  It is of interest to 
note that both excimer lasers exhibit curve shapes similar to those found for 
electric spark ignition while the Nd:YAG has a "flat" dependence up to the 
upper limit of rotameter flow rates, a behavior exhibited for all gas mixtures 
studied. 

The gas mixture most active with laser ignition is C2H2/alr and the 
corresponding graph is shown in Figure 6.  For comparison, we also include the 
graph for C3Hg/alr mixtures (we could not find similar data for C2H2/air) 
spark ignited in a closed bomb.1  Two observations are worth noting.  One, for 
the case of ArF laser ignition, the minimum ignition energy is very similar to 
that found for spark ignition, i.e., 0.2-0.25 mJ.  Two, the shape of the KrF 
and ArF curves is surprisingly flat in the full-rich equivalence ratio 
range.  This could be due to the presence of possible experimental artifact 
that may affect all of our results presented in Figures 2-6 to some extent. 

The nature of this artifact is air entrainment, since, for reasons of 
experimental simplicity, the premixed gases were flowed directly into 
laboratory air and thus, as compared to a closed bomb experiment, a certain 
amount of mixing with this air may be occuring at 3mm above the burner slot. 
The extent of mixing would depend on the individual gas mixtures being 
studied.  The presence of this artifact is supported by the fact that many gas 
mixtures seem to ignite and burn outside the range of flammabllity on the 
fuel-rich side.  The ignition outside the range of flammabllity, which is 
mostly observed for the Nd:YAG case, is probably due to the relatively sizable 
laser-produced spark which encompasses regions where laboratory air has mixed 
in with the premixed gases thus resulting in local equivalence ratios within 
the flammabllity range.  Similarly, for the case of C2H2/alr ignited by the 
excimer lasers, (Figure 6) beyond the fuel-rich flammabllity region, ignition 
causing radicals and/or ions are probably produced in sufficient numbers 
within a large enough volume in which regions of air entrainment are found 
where the local equivalence ratio is again within the flammabllity limit.  In 
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either case, once the flame which Is apparently beyond the flammablllty range 
Is Ignited, it burns as a diffusion flame rather than a pre-mixed flame.  This 
apparent artifact, while yielding curves that are probably somewhat different 
in shape than they would be in a closed bomb experiment, does not affect 
substantially the point of this report, i.e., the demonstration of the 
existence and possible high efficiency of the ultraviolet laser multiphoton 
photochemical ignition source. 

The results shown in Figure 6 further support attributing the exclmer 
laser ignition mechanism to multiphoton photochemical effects since it is well 
known that €2^2  interacts significantly (much more than with either C3H0 or 
CH^) with focussed ArF radiation by multiphoton absorption to give excited 
fragments like CH, C^,13 and C atoms.12  To the extent that these experiments 
were done in a low-pressure photolysis apparatus and their detailed 
photochemical results may not directly apply and extend to the atmospheric 
pressure regime it should be noted that we have also observed emissions from 
excited CH, C2, and C atoms both below and above ignition energy threshold 
while flowing a fuel-rich mixture during these experiments. 

The Nd:YAG (532 nm) laser ignition mechanism appears to be due to gas 
breakdown/laser spark generation.  Our observations are consistent with 
previous laser ignition studies using a Q-switched ruby laser2'^ and a pulsed 
CO2 laser  in that there was a very sharp laser energy threshold above which 
the spark size and blast wave would grow rapidly and ignition would always 
occur.  Unfortunately, this phenomenon allows little control, especially with 
respect to the deposition of small amounts of energy into the focal volume. 
Close examination of Figures 2-6 reveals that, as noted before, there is only 
a small dependence of minimum ignition energy on the equivalence ratios and 
that all of the curves fall around the 9-10 mJ level, similar to the air 
breakdown value.  Small variations in this energy are expected since gas 
breakdown is related to the ionization potential (I.P.) of the gases.  Our 
results appear to be consistent since, for example, the C2H2/air mixture has a 
lower I.P. than does CH^/N^O and we find that the minimum ignition energies 
are around 7 mJ and 12 mJ for these two mixtures, respectively. 

All of our results for laser ignition are summarized in Table 1, where 
the lowest minimum Ignition energy for each of the plots given in Figures 2-6 
is recorded.  Due to the difficulty of smoothly varying the exclmer laser 
energy, the uncertainty limits near the minimum points are somewhat large. 

An important point to consider is that for the exclmer ignition case, as 
mentioned before, only a relatively small fraction of the laser beam is 
absorbed (25% or less), while all of the spark ignition data is based on full 
absorption of available energy by the gases.   Thus, the photochemical 
ignition process is even more efficient than our data indicate, but it is 
difficult for us to quantify this since we cannot readily discern the 
difference between the fraction of laser energy absorbed and laser energy 
scattered.  Since the multiphoton photochemical Ignition is dependent on the 

13 
J.R. McDonald, A.P. Baranovski, and V.M. Donnely, "Multiphoton Vacuum 
Ultraviolet Laser Photodissociation of Acetylene:  Emission From 
Electronically Excited Fragments," Chem. Phys., Vol. 33, p. 161, 1978. 
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TABLE 1.  MINIMUM IGNITION ENERGIES FOR LASER IGNITION 

Gas Mixture Laser (X) Minimum Ignition Energy (mj/pulse) 

CH4/air ArF (193 nm) >12 

CH4/N20 ArF (193 nm) 0.65 

C3H8/air ArF (193 nm) 4.8 

C3H8/N20 ArF (193 nm) 0.91 

C2H2/air ArF (193 nm) 0.24 

Clfy/alr KrF (248 nm) >35 

CH4/N20 KrF (248 nm) >35 

CgHg/air KrF (248 nm) >35 

C3H8/N20 KrF (248 nm) 16.0 

C2H2/alr KrF (248 nm) 6.0 

CH4/alr Nd:YAG (532 nm) 9.5 

CH4/N20 Nd:YAG (532 nm) 12.0 

C3H8/air Nd:YAG (532 nm) 9.5 
C3H8/N20 Nd:YAG (532 nm) 8.6 

C2H2/air Nd:YAG (532 nm) 7.0 

power density at the focal volume, we expect that even lower laser energies 
will drive this process by using shorter focal length lenses and by using less 
divergent laser beams.  Additionally, narrowing the broad-band (~0.6 nm) ArF 
laser to better match the multiphoton absorption profile, which is unknown at 
this time, should improve the efficiency of this process considerably. 
Another aspect of the need to focus the laser beams is that the interaction 
volume is well defined and could be a considerable distance from the optical 
access ports of a closed system.  This may have profound practical 
implications, since now a photochemical ignition or combustion enhancement 
beam can be propagated through.gas mixtures which are transparent to the beam, 
except in the focal point region where the multiphoton processes occur.  Thus, 
the deleterious quenching effects due to nearby surfaces, like the windows, 
can be avoided. 

An additional aspect to consider is that the relative efficiency of the 
photochemical ignition source as compared to electric spark or laser spark 
(breakdown) igrtition may increase with decreasing pressure since the 
production of radicals and/or ions may be enhanced due to the decreasing 
effect of colllsional quenching.  Finally, it is clear that the comparison of 
our results with those for electric spark ignition is only approximate since 
our Ignition criterion required that the energized gases stabilize on the slot 
burner.  How much of an effect this is for the minimum ignition energy 
determination is not clear, but it can be argued that a more energetic 
ignition kernel is required to overcome the quenching effects of the burner. 

18 



To better understand this effect, photochemical ignition studies should be 
carried out in a closed bomb.  In general, the prospects for significant 
increase in our understanding of the chemistry involved in ignition, 
especially photochemical ignition, appear to be excellent due to the 
substantial advances in optical diagnostic/laser techniques, and further 
experiments in this area are planned for the future. 

IV.  CONCLUSIONS 

The following conclusions can be drawn from this work. 

1. The two excimer lasers, ArF and KrF, as well as the Nd:YAG (second 
harmonic) laser can readily ignite most of the premixed fuel/oxidizer gas 
mixtures flowing through a slot burner when the laser beams are focused and 
have energies in the 0.2-40 mj range. 

2. Two distinct ignition mechanisms have been observed.  The excimer 
lasers ignite the gas mixtures via a multiphoton photochemical pathway 
involving both fuel and oxidizer molecules and the amount of energy deposited 
into the reactive system can be well controlled.  The Nd:YAG laser, however, 
causes gas breakdown with the formation of a substantial spark and blast wave 
even just at the threshold of breakdown.  By the very nature of this process, 
it is impossible to deposit less energy into the system than what is absorbed 
at the breakdown threshold. 

3. The ArF laser appears to be particularly efficient in igniting 
C2H2/air mixtures where the minimum ignition energy approaches 0.2 mj and the 
primary photochemical processes involve the CjR?  molecule. 

4. Since a substantial fraction of the laser beam is not absorbed during 
photochemically induced ignition, the process is probably even more efficient 
than our data indicate.  Further improvements on efficiency should result from 
using shorter focal length lenses, a less divergent beam as well as by using a 
narrower linewidth excitation laser tuned to the multiphoton absorption 
transition which produces the required atoms, radicals, and/or ions that lead 
to the ignition of the gas mixture.  The identification of these ignition 
precursors, as well as the search for the most photochemically efficient 
pathway to produce them, should be a most worthwhile endeavor.  An enhancement 
in relative ignition efficiency may occur at lower pressures since collisional 
quenching processes will affect the production of radicals and/or ions to a 
lesser degree. 

5. The focused nature of this process may have important, practical 
considerations since now the volume of photochemical activity is well-defined 
and can be a considerable distance from quenching surfaces.  Also, depending 
on the laser wavelengths and chemical species, the laser beam can be 
transmitted undisturbed due to the lack of one-photon interactions until the 
focal point region is reached where the multiphoton processes are induced. 
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